Weak Formulation of Singular Differential Expressions in Spaces of Functions with Minimal Derivatives

نویسنده

  • M. A. El-GEBEILY
چکیده

encountered in the course of studying weak formulations of differential equations. Unlike the differential expressions, the theory behind the sesquilinear forms (1.2) is not yet fully developed. The most general treatment we have so far is for the case when such forms are semibounded or sectorial [10]. The classical Lax-Milgram theorem which is widely used in treatments involving the bilinear forms (1.2) assumes that the underlying form is positive and continuous. While such assumptions suffice to handle regular and some classes of singular differential expressions, they are not sufficient to handle the general singular expressions as they need not be semibounded. The importance of such a theory stems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method

In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...

متن کامل

Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel

A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...

متن کامل

$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...

متن کامل

FUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES

In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via  weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.

متن کامل

A Note on Solving Prandtl's Integro-Differential Equation

A simple method for solving Prandtl's integro-differential equation is proposed based on a new reproducing kernel space. Using a transformation and modifying the traditional reproducing kernel method, the singular term is removed and the analytical representation of the exact solution is obtained in the form of series in the new reproducing kernel space. Compared with known investigations, its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005